

TETRAHEDRON LETTERS

Tetrahedron Letters 44 (2003) 4835–4837

A stereocontrolled total synthesis of methyl (\pm) -O-methylpodocarpate

Arnab Roy, a Tapas Paul, Michael G. B. Drew and Debabrata Mukherjeea,*

^aDepartment of Organic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India ^bDepartment of Chemistry, The University of Reading, Whiteknights, Reading RG6 6AD, UK

Received 2 April 2003; accepted 2 May 2003

Abstract—A stereocontrolled total synthesis of methyl (\pm) -O-methyl podocarpate (4) has been successfully accomplished using the *trans*-fused diester **21** as a key intermediate. Intramolecular Michael reaction of the enone-diester **18** afforded the *cis*-fused keto-diester **19** in high yield which was stereoselectively converted into **21** via the enone **20**. © 2003 Elsevier Science Ltd. All rights reserved.

Naturally occurring ring C aromatic diterpene acids podocarpic acid (1), callitrisic acid (2)² and lambertic acid (3)³ incorporate an octahydrophenanthrene ring system as the basic carbocyclic framework and were isolated from Podocarpus cupressium, Callitris columelaris and Podocarpus lambertius, respectively. The diterpene acids 1-3 (Fig. 1) have common structural features in rings A and B; they have trans-stereochemistry at the A/B ring junction, an axially oriented carboxyl group at C-4, an axial methyl group at the angular position C-10, and an equatorial methyl group at C-4. Podocarpic acid (1) has been converted via methyl O-methylpodocarpate (4) into the bioactive diterpene quinones taxodione $(5)^4$ and maytenoquinone $(6)^5$ (Fig. 1) which possess tumour-inhibiting activity. Also, podocarpic acid derivatives have been reported6 to possess hormonal and anti-inflammatory properties and a wide variety of biological activities such as inhibition of plant cell growth and antileukemic activity. Widespread

interest in podocarpic acid is reflected in a number of diverse synthetic approaches reported in the literature⁷ over the last few decades. The total synthesis of the diterpene acids 1-3 is associated with the difficulty in the generation of three contiguous asymmetric centres and an appropriately substituted aromatic ring in an octahydrophenanthrene nucleus. Starting from commercially available 7-methoxy-1-tetralone (7), we have successfully accomplished a stereocontrolled total synthesis of methyl (\pm) -O-methylpodocarpate (4) as shown in Scheme 1. Since 4 has been converted into 1,7 28 and 3,7 the present work constitutes the formal total synthesis of (\pm) -podocarpic acid, (\pm) -callitrisic acid and (\pm) lambertic acid. The salient features of our synthesis are (i) facile conversion of the tetralone 7 into the enonediester 18 (Scheme 1), (ii) intramolecular Michael reaction of 18 in the presence of base to afford the cis-fused keto-diester 19 as the sole product in high yield, (iii) stereoselective conversion of 19 into the trans-fused

Figure 1.

Keywords: terpenes; esters; conjugate addition; Michael reaction; alkylation.

^{*} Corresponding author. Fax: (91)-33-2473-2805; e-mail: ocdm@mahendra.iacs.res.in

Scheme 1. Reagents and conditions: (i) $CH_2(CN)_2$, NH_4OAc , AcOH, C_6H_6 , reflux; (ii) $LiMe_2Cu$, Et_2O , THF, $0-20^{\circ}C$; (iii) KOH, $HOCH_2CH_2OH$, H_2O , reflux, then H_3O^+ ; heat $(190^{\circ}C)$; (iv) $(COCl)_2$, C_6H_6 , $60^{\circ}C$ then CH_2N_2 , Et_2O , $0-20^{\circ}C$; (v) $C_6H_5CO_2Ag$, MeOH, Et_3N , rt; (vi) $LiAlH_4$, Et_2O , reflux; (vii) PBr_3 , C_6H_6 , $0-70^{\circ}C$; (viii) $NaCH(CO_2Me)_2$, C_6H_6 , DMF, reflux; (ix) CrO_3 , AcOH, H_2O , $0^{\circ}C$ to rt; (x) Br_2 , Et_2O , $10^{\circ}C$ to rt; (xi) LiBr, Li_2CO_3 , DMF, $115^{\circ}C$; (xii) t-BuOK, t-BuOH, $25^{\circ}C$; (xiii) PhSeCl, CH_3CO_2Me , HCl (trace), rt then H_2O_2 , CH_3CO_2Me , THF, AcOH, $5^{\circ}C$ to rt; (xiv) H_2 , $10^{\circ}Pd$ -C, CH_3CO_2Me , rt; (xv) DMSO, NaCl, H_2O , $180^{\circ}C$; (xvi) LDA, HMPA, THF, $0^{\circ}C$; MeI, $0^{\circ}C$.

diester 21 via the enone-diester 20, and (iv) stereocontrolled transformation of 21 into methyl (\pm) -O-methylpodocarpate (4).

Our synthesis of 4 from 7 is outlined in Scheme 1. The tetralone 7 was condensed with malononitrile to provide the unsaturated dinitrile 8° in near quantitative yield. Conjugate addition of LiMe₂Cu to 8 afforded 9 (89%) which on hydrolysis and decarboxylation furnished the acid 10 in 84% yield. The corresponding diazomethyl ketone 11 was treated¹⁰ with silver benzoate in MeOH in the presence of Et₃N to give the methyl ester 12 (85%). Reduction of 12 with LiAlH₄ afforded the primary alcohol 13 (95%) which was treated with PBr₃ to furnish the bromoether 14 (74%). Condensation of 14 with dimethyl sodiomalonate afforded the diester 15 in 85% yield.

Oxidation of **15** with CrO₃ gave the keto-diester **16** (76%). Bromination of **16** in ether¹¹ followed by dehydrobromination of the resulting bromoketone **17** with LiBr and Li₂CO₃ in DMF at 115°C furnished the enone-diester **18**¹² in 76% overall yield. An intramolecular Michael reaction of **18** was effected by treatment

with *t*-BuOK (0.5 equiv.) in *t*-BuOH at 25°C for 10 h to give the tricyclic keto-diester 19^{12} in 84% yield. The *cis*-stereochemistry of the A/B ring junction of 19 was conclusively established by single-crystal X-ray crystallography. In the ¹H NMR spectrum of 19, the signals due to the ester methyl groups at C-4 appeared at δ 3.14 and 3.68 ppm for the axial and equatorial -CO₂Me groups respectively. Shielding of the axial substituent at C-4 by the aromatic C ring is a characteristic feature^{13,14} for the *cis*-fused octahydrophenanthrenes.

The keto-diester **19** is suitably functionalised for conversion to **4** requiring introduction of the Δ^5 double bond in ring B followed by catalytic hydrogenation, decarbomethoxylation, and alkylation at C-4 with CH₃I. In order to generate the required Δ^5 double bond in ring B, the ketone **19** was treated¹⁵ with PhSeCl followed by $H_2O_2^{16}$ to give the enone-diester **20**¹² in 64% yield. Catalytic hydrogenation of **20** proceeded stereoselectively with uptake of three moles of hydrogen to furnish the *trans*-diester **21**¹² in 95% yield. Catalytic hydrogenation of similar hexahydrophenanthrenones by Matsumoto and co-workers had

generated^{17,18} exclusively *trans*-stereochemistry at the A/B ring junction. The stereostructure **21** of the diester was confirmed by X-ray crystallographic analysis.¹⁹ Decarbomethoxylation of the diester **21** followed by alkylation of the resulting monoester **22** with MeI in the presence of LDA (1.6 equiv.) and HMPA (2 equiv.) at 0°C furnished methyl (±)-O-methylpodocarpate (**4**)¹² in 68% yield. Stereoselective methylation of similar ester enolate anions to generate equatorially methylated esters in cyclohexane rings has been reported recently by Theodorakis and co-workers.²⁰ The identity of synthetic **4** was secured through single-crystal X-ray crystallography.¹⁹ The spectral data of **4** also agreed very well with those reported in the literature.

In conclusion, methyl (\pm)-O-methylpodocarpate has been successfully synthesised involving a few stereoselective steps. The present synthesis constitutes the formal total synthesis of the diterpene acids (\pm)-podocarpic acid, (\pm)-callitrisic acid and (\pm)-lambertic acid.

Acknowledgements

We are grateful to the CSIR, New Delhi, for financial support (Grant No. 01(1742)/02/EMR-II). One of us (T.P.) thanks the CSIR for a fellowship. We thank the EPSRC and the University of Reading, UK for funds for the Image Plate system.

References

- 1. Campbell, W. P.; Todd, D. J. Am. Chem. Soc. 1942, 64, 928–935 and references cited therein.
- (a) Carmen, R. M.; Deeth, H. C. Aust. J. Chem. 1967, 20, 2789–2793;
 (b) Gough, L. J. Tetrahedron Lett. 1968, 9, 295–298.
- 3. Campello, J. D. P.; Fonseca, S. F.; Chang, C. J.; Wenkert, E. *Phytochemistry* **1975**, *14*, 243–248.
- 4. Mori, K.; Matsui, M. Tetrahedron 1970, 26, 3467-3473.
- Burnell, R. H.; Jean, M.; Marceau, S. Can. J. Chem. 1988, 66, 227–230.
- Parish, E. J.; Miles, D. H. J. Pharm. Sci. 1984, 73, 694–696 and references cited therein.
- 7. Hao, X.-j.; Node, M.; Fuji, K. J. Chem. Soc., Perkin Trans. 1 1992, 1505–1509 and references cited therein.
- 8. Huffman, J. W. J. Org. Chem. 1970, 35, 3154–3156.
- Satisfactory spectroscopic and microanalytical data were obtained for all new compounds.
- Hudlicky, T.; Sheth, J. P. Tetrahedron Lett. 1979, 20, 2667–2670.
- Johnson, W. S.; Anderson, J. M.; Shelberg, W. E. J. Am. Chem. Soc. 1944, 66, 218–222.

- 12. Selected spectral data for the enone-diester 18: ¹H NMR $(CDCl_3, 300 \text{ MHz}) \delta 1.45 \text{ (s, 3H)}, 1.45-2.06 \text{ (m, 6H)}, 3.20$ (t, 1H, J=7.5 Hz), 3.65 (s, 6H), 3.90 (s, 3H), 6.40, 6.75 $(AB_a, 2H, J=10 Hz), 6.88 (d, 1H, J=2.4 Hz), 6.92 (dd,$ 1H, J=8.7, 2.4 Hz), 8.14 (d, 1H, J=8.7 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 22.5, 28.6, 29.5, 41.5, 42.2, 51.0, 52.3, 52.3, 55.3, 110.5, 112.8, 125.4, 128.2, 129.2, 150.2, 155.2, 163.1, 169.5, 169.5, 184.3. For the keto-diester 19: ¹H NMR (CDCl₃, 300 MHz) δ 1.33 (s, 3H), 1.41–1.68 (m, 3H), 2.07–2.46 (m, 3H), 2.86–3.09 (m, 3H), 3.14 (s, 3H), 3.68 (s, 3H), 3.85 (s, 3H), 6.76 (d, 1H, J=2.4 Hz), 6.79 (dd, 1H, J=8.6, 2.4 Hz), 7.98 (d, 1H, J=8.6 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 18.9, 34.4, 34.7, 35.8, 37.3, 37.6, 46.1, 50.9, 52.6, 55.3, 56.0, 110.4, 111.5, 125.9, 129.7, 149.2, 164.0, 170.2, 172.6, 195.1. For the enonediester **20**: 1 H NMR (CDCl₃, 300 MHz) δ 1.30 (s, 3H), 1.68–2.72 (m, 6H), 3.76 (s, 3H), 3.81 (s, 3H), 3.89 (s, 3H), 6.25 (s, 1H), 6.94 (dd, 1H, J=9, 2.3 Hz), 6.94 (d, 1H, J=2.3 Hz), 8.14 (d, 1H, J=9.0 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 18.5, 30.4, 32.8, 37.6, 41.2, 52.8, 53.3, 55.4, 62.3, 110.3, 112.8, 123.7, 128.9, 130.1, 154.1, 158.0, 163.4, 169.9, 171.3, 183.4. For the diester 21: ¹H NMR (CDCl₃, 300 MHz) δ 1.05 (s, 3H), 1.25–1.84 (m, 4H), 1.95–2.25 (m, 3H), 2.35–2.85 (m, 4H), 3.73 (s, 3H), 3.75 (s, 3H), 3.77 (s, 3H), 6.68 (dd, 1H, J=8.4, 2.6 Hz), 6.79 (d, 1H, J=2.6 Hz), 6.97 (d, 1H, J=8.4 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 19.6, 23.0, 23.7, 30.8, 34.0, 37.8, 38.6, 47.2, 51.8, 52.6, 55.2, 57.6, 110.9, 111.3, 127.5, 130.0, 148.6, 157.7, 172.2, 173.4. For methyl *O*-methylpodocarpate 4: ¹H NMR (CDCl₃, 300 MHz) δ 1.03 (s, 3H), 1.27 (s, 3H), 1.32-1.66 (m, 4H), 1.91-2.87 (m, 7H), 3.66 (s, 3H), 3.77 (s, 3H), 6.67 (dd, 1H, J=8.3, 2.5 Hz), 6.81 (d, 1H, J=2.5Hz), 6.96 (d, 1H, J=8.3 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 20.0, 21.1, 22.9, 28.5, 31.2, 37.6, 38.7, 39.4, 44.0, 51.2, 52.8, 55.2, 111.1, 111.2, 127.6, 129.8, 149.3, 157.7, 177.9.
- Stevens, R. V.; Bisacchi, G. S. J. Org. Chem. 1982, 47, 2396–2399.
- 14. Axon, B. W.; Davis, B. R.; Woodgate, P. D. J. Chem. Soc., Perkin Trans. 1 1981, 2956–2962.
- Cava, M. P.; Ahmed, Z.; Benfaremo, N.; Murphy, R. A., Jr.; O'Malley, G. J. *Tetrahedron* 1984, 40, 4767–4776.
- 16. Reich, H. J.; Wollowitz, S. Org. React. 1993, 44, 55-56.
- 17. Matsumoto, T.; Endo, Y.; Okimoto, M. Bull. Chem. Soc. Jpn 1983, 56, 2018–2022.
- 18. Matsumoto, T.; Usui, S.; Morimoto, T. *Bull. Chem. Soc. Jpn* **1977**, *50*, 1575–1579.
- The crystal data for the compounds 21 and 4 have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 199712 and CCDC 204745, respectively.
- 20. Ling, T.; Chowdhury, C.; Kramer, B. A.; Vong, B. G.; Palladino, M. A.; Theodorakis, E. A. *J. Org. Chem.* **2001**, *66*, 8843–8853 and references cited therein.